This is a post about an old vulnerability that I finally found the time to blog about. It dates back to 2014, but from a technical point of view it is nevertheless interesting: An XML parser that tries to fix structural errors in a document caused a DoS problem.
All previous posts of this series focused on XSS. This time, we present a vulnerability which is connected another Cloud Management Platform: OpenNebula. This Infrastructure-as-a-Service platform started as a research project in 2005. It is used by information technology companies like IBM, Dell and Akamai as well as academic institutions and the European Space Administrations (ESA). By relying on standard Linux tools as far as possible, OpenNebula reaches a high level of customizability and flexibility in hypervisors, storage systems, and network infrastructures. OpenNebula is distributed using the Apache-2 license.
OpenNebula offers a broad variety of interfaces to control a cloud. This post focuses on Sunstone, OpenNebula's web interface (see Figure 1).
Before OpenNebula 4.6.2, Sunstone had no Cross-Site Request Forgery (CSRF) protection. This is a severe problem. Consider an attacker who lures a victim into clicking on a malicious link while being logged in at a private cloud. This enables the attacker to send arbitrary requests to the private cloud through the victims browser. However, we could find other bugs in OpenNebula that allowed us to perform much more sophisticated attacks.
OpenNebula saves the incorrectly generated XML document in a database. The next time the OpenNebula core retrieves information about that particular VM from the database the XML parser is mixed up and runs into an error because it only expects a string as name, not an XML tree. As a result, Sunstone cannot be used to control the VM anymore. The Denial-of-Service attack can only be reverted from the command line interface of OpenNebula.
This bug can be triggered by a CSRF-attack, which means that it is a valid attack against a private cloud: By luring a victim onto a maliciously crafted website while logged in into Sunstone, an attacker can make all the victim's VMs uncontrollable via Sunstone. A video of the attack can be seen here:
This bug has been fixed in OpenNebula 4.6.2.
This result is a collaborative work together with Mario Heiderich. It has been published at ACM CCSW 2015. The paper can be found here.
All previous posts of this series focused on XSS. This time, we present a vulnerability which is connected another Cloud Management Platform: OpenNebula. This Infrastructure-as-a-Service platform started as a research project in 2005. It is used by information technology companies like IBM, Dell and Akamai as well as academic institutions and the European Space Administrations (ESA). By relying on standard Linux tools as far as possible, OpenNebula reaches a high level of customizability and flexibility in hypervisors, storage systems, and network infrastructures. OpenNebula is distributed using the Apache-2 license.
OpenNebula offers a broad variety of interfaces to control a cloud. This post focuses on Sunstone, OpenNebula's web interface (see Figure 1).
Figure 1: OpenNebula's Sunstone Interface displaying a VM's control interface |
Before OpenNebula 4.6.2, Sunstone had no Cross-Site Request Forgery (CSRF) protection. This is a severe problem. Consider an attacker who lures a victim into clicking on a malicious link while being logged in at a private cloud. This enables the attacker to send arbitrary requests to the private cloud through the victims browser. However, we could find other bugs in OpenNebula that allowed us to perform much more sophisticated attacks.
Denial-of-Service on OpenNebula-VM
At its backend, OpenNebula manages VMs with XML documents. A sample for such an XML document looks like this:<VM>OpenNebula 4.6.1 contains a bug in the sanitization of input for these XML documents: Whenever a VM's name contains an opening XML tag (but no corresponding closing one), an XML generator at the backend automatically inserts the corresponding closing tag to ensure well-formedness of the resulting document. However, the generator outputs an XML document that does not comply with the XML schema OpenNebula expects. The listing below shows the structure that is created after renaming the VM to 'My <x> VM':
<ID>0</ID>
<NAME>My VM</NAME>
<PERMISSIONS>...</PERMISSIONS>
<MEMORY>512</MEMORY>
<CPU>1</CPU>
...
</VM>
<VM>The generator closes the <x> tag, but not the <NAME> tag. At the end of the document, the generator closes all opened tags including <NAME>.
<ID>0</ID>
<NAME>My <x> VM</x>
<PERMISSIONS>...</PERMISSIONS>
<MEMORY>512</MEMORY>
<CPU>1</CPU>
...
</NAME>
</VM>
OpenNebula saves the incorrectly generated XML document in a database. The next time the OpenNebula core retrieves information about that particular VM from the database the XML parser is mixed up and runs into an error because it only expects a string as name, not an XML tree. As a result, Sunstone cannot be used to control the VM anymore. The Denial-of-Service attack can only be reverted from the command line interface of OpenNebula.
This bug can be triggered by a CSRF-attack, which means that it is a valid attack against a private cloud: By luring a victim onto a maliciously crafted website while logged in into Sunstone, an attacker can make all the victim's VMs uncontrollable via Sunstone. A video of the attack can be seen here:
This bug has been fixed in OpenNebula 4.6.2.
This result is a collaborative work together with Mario Heiderich. It has been published at ACM CCSW 2015. The paper can be found here.
Related articles
- Hacking Tools For Mac
- Game Hacking
- Hack Tools Mac
- Hacker Tools For Windows
- Pentest Tools
- Termux Hacking Tools 2019
- Easy Hack Tools
- Hack Website Online Tool
- Hacking Tools For Windows 7
- Tools Used For Hacking
- Pentest Tools Website
- Pentest Tools Bluekeep
- Pentest Box Tools Download
- Hacking Tools For Pc
- Hacking Tools Download
- Hacking Tools For Windows 7
- Hacking Tools
- Hacking Tools Pc
- Hacker Tools For Windows
- Hacking Tools Windows
- Hack Website Online Tool
- Hacking Tools Download
- Free Pentest Tools For Windows
- Hacker Tool Kit
- Underground Hacker Sites
- Hacking Tools For Windows 7
- Hacker Tools Software
- Hack And Tools
- Hacker Tools 2020
- Hacking Tools Windows 10
- Pentest Tools Linux
- Usb Pentest Tools
- Hacker Tools Online
- Hacking App
- Hacking Tools Hardware
- Nsa Hacker Tools
- Hacker Tools For Ios
- Free Pentest Tools For Windows
- Ethical Hacker Tools
- Hacker Security Tools
- Hacker Tools For Windows
- Easy Hack Tools
- Hacking Tools Windows 10
- Hacker Tools For Pc
- Hacking Tools Name
- Hacker Tools List
- Hacking Tools 2019
- Hacker Tools Linux
- Hacker Tools List
- Pentest Recon Tools
- Pentest Tools Nmap
- Hack Tools Pc
- Best Hacking Tools 2019
- Hacker Tools Software
- Hacker Tools Mac
- Hacker Tools Apk Download
- Pentest Tools Github
- Hack Tools Download
- Hacking App
- Hacker Tools Free
- Hacking Tools For Kali Linux
- Pentest Automation Tools
- Pentest Tools Download
- Pentest Tools Kali Linux
- Beginner Hacker Tools
- Nsa Hack Tools Download
- Kik Hack Tools
- Pentest Recon Tools
- Pentest Tools For Windows
- Hack App
- Best Hacking Tools 2019
- Kik Hack Tools
- Hacker Tools
- Hacking Tools Free Download
- New Hack Tools
- Bluetooth Hacking Tools Kali
- Hacker Tools Free Download
- Hacker Tools For Windows
- Hacking Tools Windows 10
- Hackrf Tools
- Hacking Tools
- Hack Tools Pc
- Pentest Tools For Windows
- Beginner Hacker Tools
- Hack And Tools
- Pentest Tools Find Subdomains
- Ethical Hacker Tools
- Hacker Tools Mac
- Best Hacking Tools 2020
- Hacking Tools Pc
- Hack Website Online Tool
- Pentest Box Tools Download
- Hack Tools For Mac
- Hack Tools Online
- Ethical Hacker Tools
- Hacking Tools Download
- Hackrf Tools
- How To Install Pentest Tools In Ubuntu
- Pentest Tools Find Subdomains
Ingen kommentarer:
Legg inn en kommentar